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Nonlinear flow in porous media

Sergio Rojas* and Joel Koplik
Benjamin Levich Institute and Department of Physics, City College of the City University of New York, New York, New York 1

~Received 13 April 1998!

The flow of an incompressible liquid at nonzero Reynolds number Re in a two-dimensional model porous
medium is studied via numerical simulation. The geometry is a random array of cylinders of square cross
section and spectral element methods are used. We find a transition from linear Darcy flow at vanishing Re, to
a cubic transitional regime at low Re, and then a quadratic Forchheimer when Re5O(1). In addition, some
general remarks on scaling behavior and the form of the flow equation at finite Re are presented.
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I. INTRODUCTION

While the creeping flow of an incompressible viscous l
uid in a porous medium is quite well understood, at leas
principle @1#, the situation at higher velocities has receiv
rather less attention. At vanishing Reynolds number, the
earity of the underlying Stokes equations for fluid flow in t
pore space makes it intuitively obvious that there should b
linear relation between average pressure gradient and
rate, as exhibited in Darcy’s law. Experiments and deri
tions of varying degrees of rigor are consistent with this r
soning and the only issue in such problems is the value of
proportionality constant, the permeability, and perhaps
relation to other transport coefficients. For flow at no
vanishing Reynolds number, experiments carried out
Forchheimer@2# and confirmed by others@3# indicate a qua-
dratic dependence of pressure drop on flow rate, but the
oretical situation is far less clear.

The quadratic nature of the nonlinearity in the Navie
Stokes equations for the microscopic flow vaguely sugg
that the average relationship should be quadratic as well,
a general and straightforward analytic derivation has
been found. A number of arguments appear in the literat
but all require some additional approximation. For examp
volume averaging methods require closure assumptions@4#,
while in the earliest derivations based on match
asymptotic expansions@5# further phenomenological as
sumptions are needed and are restricted to the high por
limit @6#. Alternatively, there are heuristic scaling argume
~see below! or approximate arguments based on the Os
approximation @7#. A systematic multiple scale analys
based on the smallness of the characteristic size of the po
medium microstructure relative to typical macroscop
lengths correctly reproduces Darcy’s law in creeping fl
@9#, but gives acubic law at small but nonzero Reynold
number@8#. The latter is generally not found experimenta
~but see@10#!. Recent numerical simulations have clarifie
the situation considerably; several calculations of flow p
arrays of circular cylinders find a transitional cubic relati

*Present address: Intevep, SA Apartado 76343, Caracas 10
Venezuela.
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at small Reynolds number, followed by a quadratic law
larger values@11,12,7#.

In this paper we will present further numerical confirm
tion in a different geometry of the two-stage transition sc
nario just described: a pressure drop vs flow rate rela
varying from linear to cubic to quadratic as the Reyno
number increases. In addition, a variety of remarks and
guments on this problem, relating to the form of the averag
equation and the relation between permeability and cond
tivity, will be made. In Sec. II, we define the variables a
scaling operations and discuss the form of the macrosc
relation between averaged pressure gradient and velo
Section III describes the numerical computations, based o
spectral element method applied to a random array of cy
ders of square cross section. In Sec. IV we discuss the
merical results. Concluding remarks appear in Sec. V.

II. EFFECTIVE FLOW EQUATION

We consider a steady incompressible Newtonian fluid
densityr and viscositym flowing at finite Reynolds numbe
in a fixed porous medium, with equations of motion

ru–“u52“p1m¹2u, “–u50 ~1!

and no-slip boundary conditions on the surface of the p
space. The latter will be modeled as a fixed array
‘‘grains,’’ particles of typical sizea making up the solid
matrix. Ultimately we will suppose that the porous mediu
occupies the central section of a slab~two dimensions! or
tube~three dimensions!, with free fluid regions upstream an
downstream, so that the asymptotic flow at a large dista
from the porous medium is Poiseuille. The relevant veloc
scaleU is the average velocity in the free fluid regions~or,
equivalently,f times the average velocity in the porous m
dium, wheref is the porosity! and a suitable length scale fo
flow within the pore space is the square root of the perm
ability k, so we define the Reynolds number as

Re5
rUk1/2

m
. ~2!A,
4776 © 1998 The American Physical Society
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PRE 58 4777NONLINEAR FLOW IN POROUS MEDIA
The value of Re controls the importance of nonlinear iner
corrections to the microscopic equations in the pore sp
and when Re5O(1) we expect a nonlinear macroscop
equation.

At vanishing values of Re, the averaged pressure~P! and
velocity ~U! satisfy Darcy’s law

“P52
m

k
U, ~3!

where the averaging is either spatial, over regions of sp
containing many grains, or statistical, over an ensemble
porous media with the same distribution of grains. We ha
assumed in writing this formula that the porous medium
statistically homogeneous and isotropic, so there is prefe
orientation andk does not vary spatially. At finite values o
Re, rotational invariance constrains the more general a
aged equation to the form

“P52
m

k
U@11 f ~Re!#, ~4!

in which the a priori unknown functionf is the focus of
interest.

Note that we have not included in Eq.~4! a possible con-
vective derivative term of the formrU–“U, which is al-
lowed by rotational invariance and occasionally included
porous medium modeling studies. Such a term would
appear in any flow that is one dimensional on average, s
then the average velocity cannot vary, but might appear if
flow is allowed to vary on some length scaleL much larger
than k1/2 or the grain scalea. The reason for omitting the
convective derivative is that a simple scaling estimate
plies that such a term will be macroscopically negligib
@13#. It is convenient in this context to nondimensionali
Eq. ~4! using a velocity scaleU0 , the length scaleL, and a
Darcy pressure scalemU0 /k. The dimensionless form of Eq
~4! plus the convective derivative term then becomes

“P52U@11 f ~Re!#2
rU0k

mL
U–“U

and the coefficient of the last term is Re times the sm
numberk1/2/L. In fact, for purposes of macroscopic flow,
is more sensible to work in terms of amacroscopicReynolds
numberR5rUL/m, in which case the coefficient of th
possible convective derivative term isR(k/L2) and quite
negligible in most circumstances.

The form of the correctionf (Re) to Darcy’s law has bee
a matter of controversy, which has clarified considerably
cently. If one assumes, following Mei and Auriault@8#, that
for finite but small Reynolds number there is a regular p
turbation expansion in powers of velocity and the small
rametere5k1/2/L, then rotational invariance essentially di
tates a cubic correction.~The original derivation assumed a
additional relation betweene and Re, but it is straightfor-
ward to show that the result holds more generally@14#. Al-
ternatively, arguments based on fore-aft symmetry@7,10#
yield the same result.! In fact, the quadratic Forchheime
equation circumvents this difficulty on the one hand by
l
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nonanalytic dependence on the absolute value of the velo
through Re and on the other by breaking fore-aft symme
in a finite-Re wake.

A heuristic argument for a quadratic correction to Darcy
law @ f (Re);Re# at high Re can be obtained by a bounda
layer-like scaling argument, if one assumes that at finite
the microscopic flow field in a disordered porous mediu
does not have a preferred spatial direction for its most ra
variation. In a random porous medium, one expects the fl
to ‘‘wrap around’’ the grains, in a fully three-dimensiona
fashion. The most rapid variation in the velocity would occ
in a direction locally normal to the grains in a thin bounda
layer and therefore without a strong bias with respect to
average flow. This assertion is in distinction to the comm
boundary-layer picture, say for flow along a flat plate@15#,
where there are distinct directions for the average flow a
the most rapid variation. In the spirit of the derivation
boundary layer equations, if we estimate the derivatives
Eq. ~1! by a typical magnitude divided by a typical leng
scale of variation, we have

r
U2

DL
;

P

DL
1mF U

DL
21

U

DT
2G ,

whereL,T refer to longitudinal and transverse length scal
respectively. If we assume thatDL;DT and that the pressur
variations are negligible, thenD;m/rU. Alternatively, if
the pressure has an inertial scalingP;rU2 the same result
follows, while if the pressure has a Darcy scalingP
;mU/k this term would be negligible when the velocity
high enough to make the boundary layer thin compared
k1/2, the typical radius of the narrowest parts of the flo
paths controlling the permeability. Given this boundary lay
scaling, we can determine the overall pressure dropP across
the porous medium by use of the exact expression@16# for
energy dissipation,

QP5mE dx(
i , j

S ]ui

]xj
D 2

,

where the integral runs over the pore space. The right-h
side is estimated as the grain surface area times the boun
layer thicknessD times the square of the largest veloci
gradientU/D, giving UP;D(U/D)2 or P;U2.

III. SIMULATION METHOD

We wish to compute the flow in a class of model poro
media, composed of a two-dimensional regular or rand
arrays of fixed square obstacles placed in the interior o
channel. Examples are shown in Fig. 1, in which the firs
strictly periodic, while the others have obstacles centere
random positions with successively decreasing size, so a
generate a sequence of increasing porosities. The prope
of the various cases considered are summarized in Tab
Figures for all cases and further details on the numer
simulations may be found in@17#. In the figures, the uppe
and lower horizontal lines represent the confining walls
the channel and the open regions to either side repre
empty sections of straight channel in which a Poiseuille
locity profile may be assumed. The obstacles are ideal
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4778 PRE 58SERGIO ROJAS AND JOEL KOPLIK
tions of the solid grains found in laboratory and field syste
and the overall configuration models a ‘‘core’’ of porou
material placed in a jacketing container.

These geometries have been chosen for computati
convenience and are evidently highly idealized models
realistic naturally occurring porous media, but we belie
that the differences are not relevant to our conclusions. F
we are working with systems in two dimensions rather th
three or, alternatively, flow at right angles to the axes of
array of cylinders of a square cross section. While ma
physical phenomena exhibit a distinction between two a
three dimensions, there is no reason to expect a problem
the laminar flow of a single viscous liquid in a wel

FIG. 1. Examples of the porous media geometries studied
merically in this work.
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connected pore space. The two- and three-dimensional
periments cited above at various Reynolds numbers do
show a difference in qualitative behavior, and likewise all
the theoretical arguments mentioned do not have any dim
sional sensitivity. Only if the connectivity of the pore spa
were an issue, as would occur in immiscible displacemen
in the percolation limit for the single-fluid flows studie
here, is dimension likely to matter. Second, we have squ
grains oriented with sides exactly parallel to the avera
flow. However, the precise shape is unlikely to be quali
tively significant because there will always be a viscous s
region surrounding any solid body, which effectively roun
the corners~see below for a quantitative discussion! and the
flow around the most upstream grains will have the effect
randomizing the direction of the streamlines incident
those downstream. Furthermore, one can think of the squ
as including the sharp corners sometimes found on grain
geological systems and absent when the grains are c
monly modeled as circles or spheres. Finally, one might
ject that our systems are rather small, containing only 40–
grains, and all have relatively high porosity. We certain
expect that the numerical value of coefficients such as
permeability to differ from those in more compact system
but this is not the focus of this work. We are concerned w
the general form of the flow equation and it is reasonable
expect that the essence of the system is one with a rapid l
variation in the flow field imposed by an irregular intern
bounding surface. In fact, flow in rough pipes exhibits
analogous transition from linear to quadratic drag@15#.

The numerical method used is a spectral finite elem
method, encoded in the commercial software pack
NEKTON @18#. The flow domain is divided into trapezoida
elements and the flow fields are expanded into polynom
of a specified order within each element. As an example
the element decomposition, the model porous medi
shown in Fig. 1~d! is decomposed in Fig. 2. The calculation
are carried out, typically with fifth-order polynomials t
start, and then refined to order 7 or 9 as a test of the accu
of the computation. The resulting variation in the press
difference is less than 1%, over the full range of Reyno

u-

TABLE I. Geometric parameters and computational results
various geometries. Systems 1 and 2 are quasiperiodic@2 is dis-
played in Fig. 1~a!# and the others are random@3, 6, and 8 are
shown in Figs. 1~b!, 1~c!, and 1~d!, respectively#. The length scale
for the ‘‘grain size’’ a and the permeabilityk is the width of the
channel, while the conductivity is normalized to the pure-flu
value. Numbers in square brackets denote multiplicative power
10.

System f a k s B C

1 0.762 0.0625 1.79@-4# 0.566 0.170 0.063
2a 0.716 0.0666 2.00@-4# 0.522 0.0327 0.0206
3b 0.842 0.0625 3.29@-4# 0.677 0.101 0.0481
4 0.884 0.05 5.51@-4# 0.781 0.090 0.0377
5 0.901 0.0469 6.22@-4# 0.804 0.0871 0.0349
6c 0.922 0.0416 7.56@-4# 0.842 0.0824 0.0328
7 0.956 0.0312 1.10@-3# 0.908 0.0742 0.0241
8d 0.980 0.0208 1.62@-3# 0.958 0.0619 0.0241
9 0.993 0.0125 2.25@-3# 0.984 0.0505 0.018
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PRE 58 4779NONLINEAR FLOW IN POROUS MEDIA
numbers studied. Alternately, the calculation could be
fined by subdividing the elements into smaller ones, but
memory requirements made this option impractical.

The idea of the calculation is to specify the average
locity U through the Poiseuille profile at the sample en
u(y)56Uy(w2y)/w2, wherew is the channel width, and
compute the net pressure drop from end to end us
NEKTON. To focus on the porous media part, we subtract
the ~Poiseuille! pressure drops in the empty regions betwe
the ends and the grain-filled region,

DPPM5~P12P2!212mU~x22x12LPM!/w2, ~5!

whereP1,2 are the upstream and downstream pressures m
sured at the pointsx1,2 and LPM is the length of the centra
porous segment. We then fit the resulting porous med
pressure drop to an appropriate polynomial inU,

2¹P[
DPPM

LPM
5

m

k
U1

Br

k1/2
U21

Cr2

m
U3, ~6!

FIG. 2. Computational mesh corresponding to Fig. 1~d!.

FIG. 3. Variation of the normalized pressure dropF with Re, for
~a! system 2 shown in Fig. 1~a! and~b! system 9 shown in Fig. 1~d!.
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where the coefficientsB andC are dimensionless. We hav
anticipated that the pressure gradient will involve at m
cubic terms and the notation is similar to that of Beavers a
Sparrow@3#, whose experimental geometry resembles ou
It is convenient to recast the latter equation into fully dime
sionless form, using the Reynolds number given in Eq.~2!,
by defining a dimensionless pressure gradient normalize
Darcy flow,

F[
k

mU

DPPM

LPM
511B Re1C Re2. ~7!

Aside from global fits using Eq.~7!, we will also consider
piecewise fits to the transitional cubic and high-Re quadr
regions and it is convenient to have the special cases

F2511B Re, ~8a!

F3511C Re2. ~8b!

For each geometry, we first solve the Stokes equation
find the permeability, defined operationally by dropping t
nonlinear terms in Eq.~6!, and then the full~steady, incom-
pressible! Navier-Stokes equations to study nonlinear effec
The boundary conditions on the calculations are a no-
velocity on edges of each grain and on the sides of the ch
nel and a Poiseuille velocity profile at the left and rig
boundaries. Although the systems studied are not fully ro
tionally invariant, we have made an effort to choose geo
etries having at least a discrete 90° rotational invariance

FIG. 4. Quadratic variation ofF with Re in the transitional
regime, corresponding to Fig. 3.
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4780 PRE 58SERGIO ROJAS AND JOEL KOPLIK
fact, we find that when the grain-filled region is rotated
90°, the change in permeability is less than 3%.

IV. NUMERICAL RESULTS

We have calculated the pressure drop as a function
Reynolds number for the systems listed in Table I and ill
trated in part in Fig. 1. All regular geometries and all rando
geometries have essentially the same behavior, respecti
so it suffices to discuss one example of each in detail.
variation of the dimensionless pressure drop with Re
shown in Figs. 3~a! and 3~b! for one typical periodic case
and one typical random case, corresponding to system
@Fig. 1~a!# and 8@Fig. 1~d!# in Table I. As stated above, th
numerical results are Darcy flow at small Re~constantF), a
cubic transitional~quadraticF) regime at Re50.2–1, and a
quadratic behavior~linear F) at higher Re. To verify these
statements in more detail, we first focus on the transitio
regime in Figs. 4~a!, 4~b!, indicating how a linear depen
dence ofF3 vs Re2 fits the data reasonably well. Of cours
allowing for a more complicated behavior with an addition
parameter provides an improved fit and we see in Figs.~a!
and 5~b!, that both better agreement and an extended ra
of Re values are provided by retaining linear and quadr
terms inF. The corresponding coefficients are recorded
Table I. The values ofB are qualitatively consistent with th
experiments of Beavers and Sparrow on flow past array
circular cylinders, who found a value 0.074 for the cor
sponding parameter. At Re.1, as indicated in Figs. 6~a! and
6~b! however, the simulation results do not show any q
dratic behavior at all.

FIG. 5. Combined linear plus quadratic fit to a larger transit
region, as in Fig. 3.
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In addition to these finite-Re considerations, it is of inte
est to consider the variation of conductivity and permeabi
with porosity in the porous media studied here. For cond
tivity, we imagine that fluid in the pore space has an elec
cal conductivitys0 , impose voltages 1 and 0 on the left an
right edges of the sample, respectively, and compute the
current flowI . The voltage drop in the pure-fluid regions
subtracted analogously to the pressure subtraction in Eq~5!
and the relative conductivity of the porous medium is defin
as

g5
1

s0

I /w

DV/LPM
. ~9!

~For the calculation, we useNEKTON to solve the mathemati
cally isomorphic heat flow problem.! The variation ofg with

FIG. 7. Variation of effective conductivity with solid fraction
(c512f) for the random systems 3–9.

FIG. 6. Variation ofF with Re for Re.1, as in Fig. 3.
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PRE 58 4781NONLINEAR FLOW IN POROUS MEDIA
porosity ~equivalently, one minus the solid concentrationc)
is shown in a log-log plot in Fig. 7. The fit isg;f2, a
dependence often found in porous media@1#, although vari-
ous values of the exponent are common. Similarly, the va
tion of permeability ~normalized to the channel-widt
squared! with porosity is shown in Fig. 8, but this does n
appear to follow a power law. Although for some poro
media and in some theoretical models there are interrel
power-laws forg and K, such a relation is not always ob
served in the laboratory. For example, the ‘‘shrinking tub
model of Wonget al. @19#, motivated by experiments on
compact porous medium of well-fused glass beads, predic
permeability exponent twice the conductivity exponent, b
in the geometry considered here the porosity variation wo
not be accurately described in these terms.

Alternatively we can compare the permeability variati
with porosity to calculations of the drag on an array of c
cular cylinders by Sangani and Acrivos@20#. These authors
find that a normalized drag per unit length of cylinderF8
5A/ck (A is the cross sectional area andc is the solid frac-
tion! can be expressed as

F85
4p

2
1

2
lnc20.7381c20.887c212.039c3

. ~10!

Now for the regular square array in Fig. 1~a!, the simula-
tional result forF8 is 4.36, while Eq.~10! gives 4.43. The
discrepancy may be rationalized based on the fam
Stokes’s flow theorem that the drag on a solid particle
greater than the drag on any smaller particle that is geom
cally contained within it@21,16#. Here our square grain
would contain the inscribed circular grains of radiusa/2 and
are themselves contained within circumscribing circles of
dius a/A2. Formula~10! gives lower and upper bounds fo
F8 of 4.08 and 4.72, respectively, which indeed bracket
numerical value.

In the random case, we plotF8 using our results fork vs
c, using the actual cross sectional area of the grains, as
points in Fig. 9. The dashed curve is Eq.~10!, which has a
similar shape but differs by a multiplicative factor of abo

FIG. 8. Variation of normalized permeability (K5k/w2) with
solid fraction for the random systems 3–9.
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ed
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0.715. In this case, the resulting drag islarger than the os-
tensible upper bound derived from Eq.~10! and circumscrib-
ing circles. The qualitative reason is that for a given set
obstacles, random systems are less permeable than re
ones. The permeability is controlled by the narrowest sp
ning set of flow paths, and a random array will have so
narrower gaps@22#. Alternatively ~in a manner similar to
@7#!, we can adjust the value of grain cross sectional area
a multiplicative factor 1.5 to obtain the solid curve in th
figure, arguing that a random array of square grains sho
be equivalent to a regular array of circular grains at a s
ably higher concentration.

V. CONCLUSIONS

We have discussed several aspects of finite Reyn
number flow in a model porous medium. The overall resul
that the pressure drop in a flow that is on average unidir
tional is linear as Re→0, quadratic at finite Re, and has
cubic dependence in the transitional region. These con
sions are in agreement with most~but not all! previous the-
oretical, computational, and experimental studies, but
have examined a somewhat different geometry and ther
helped establish their robustness. In addition, we have
vided heuristic arguments for the behavior~4! for general
flows, as well as some justification for quadratic drag.
number of open questions remain, most notably to obt
some insight into the numerical value of the coefficientB
and perhaps to relate it to other porous media transport
efficients. A first-principles derivation of the quadratic dra
law for random systems might help address this question
would certainly be of conceptual interest in general.
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FIG. 9. Normalized drag vs solid fraction for the random sy
tems 3–9. The points are the numerical data, the dashed cur
Eq. ~10! using the actual grain cross sectional area and solid f
tion and the solid line is Eq.~10! with an 9effective9 grain area 1.5
times larger.
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