PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

Nonlinear flow in porous media
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The flow of an incompressible liquid at nonzero Reynolds number Re in a two-dimensional model porous
medium is studied via numerical simulation. The geometry is a random array of cylinders of square cross
section and spectral element methods are used. We find a transition from linear Darcy flow at vanishing Re, to
a cubic transitional regime at low Re, and then a quadratic Forchheimer whe®@S8. In addition, some
general remarks on scaling behavior and the form of the flow equation at finite Re are presented.
[S1063-651%98)13210-5
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[. INTRODUCTION at small Reynolds number, followed by a quadratic law at
larger valueg11,12,7.

While the creeping flow of an incompressible viscous lig- In this paper we will present further numerical confirma-
uid in a porous medium is quite well understood, at least irfion in a different geometry of the two-stage transition sce-
principle [1], the situation at higher velocities has receivednario just described: a pressure drop vs flow rate relation
rather less attention. At vanishing Reynolds number, the linvarying from linear to cubic to quadratic as the Reynolds
earity of the underlying Stokes equations for fluid flow in the "umber increases. In addition, a variety of remarks and ar-
pore space makes it intuitively obvious that there should be §Uments on this problem, relating to the form of the averaged

linear relation between average pressure gradient and ﬂoﬁ)q.uation and the relation between permeability and conduc-

rate, as exhibited in Darcy’s law. Experiments and derivatlVity, will be made. In Sec. Il, we define the variables and

tions of varying degrees of rigor are consistent with this rea—"‘"c""".ng operations and discuss the form Of. the macroscopic
soning and the only issue in such problems is the value of threlatlon between averaged pressure gradient and velocity.

roportionality constant, the permeability, and perhaps its ection Il describes the numerical computations, based on a
brop ' perm Y, P P Spectral element method applied to a random array of cylin-
relation to other transport coefficients. For flow at non

“ders of square cross section. In Sec. IV we discuss the nu-

vanishing Reynolds number, experiments carried out b¥nerical results. Concludina remarks appear in Sec. V
Forchheimef2] and confirmed by othel$] indicate a qua- ' g PP C

dratic dependence of pressure drop on flow rate, but the the-
oretical situation is far less clear. Il. EFFECTIVE FLOW EQUATION

The quadratic nature of the nonlinearity in the Navier- ) ) . ) .
Stokes equations for the microscopic flow vaguely suggests W€ consider a steady incompressible Newtonian fluid of
that the average relationship should be quadratic as well, b@€NSityp and viscosityu flowing at finite Reynolds number
a general and straightforward analytic derivation has nof @ fixéd porous medium, with equations of motion
been found. A number of arguments appear in the literature,
but all require some additional approximation. For example, pu-Vu=—Vp+uV2u, V.u=0 1)
volume averaging methods require closure assumpfiéhs
while in the earliest derivations based on matched
asymptotic expansion$5] further phenomenological as- and no-slip boundary conditions on the surface of the pore
sumptions are needed and are restricted to the high porosigpace. The latter will be modeled as a fixed array of
limit [6]. Alternatively, there are heuristic scaling arguments*grains,” particles of typical sizea making up the solid
(see below or approximate arguments based on the Oseematrix. Ultimately we will suppose that the porous medium
approximation[7]. A systematic multiple scale analysis occupies the central section of a sléwo dimensions or
based on the smallness of the characteristic size of the porotighe (three dimensionswith free fluid regions upstream and
medium microstructure relative to typical macroscopicdownstream, so that the asymptotic flow at a large distance
lengths correctly reproduces Darcy’s law in creeping flowfrom the porous medium is Poiseduille. The relevant velocity
[9], but gives acubic law at small but nonzero Reynolds scaleU is the average velocity in the free fluid regiofws,
number[8]. The latter is generally not found experimentally equivalently,¢ times the average velocity in the porous me-
(but see[10]). Recent numerical simulations have clarified dium, where¢ is the porosity and a suitable length scale for
the situation considerably; several calculations of flow pasflow within the pore space is the square root of the perme-
arrays of circular cylinders find a transitional cubic relationability k, so we define the Reynolds number as
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The value of Re controls the importance of nonlinear inertialhonanalytic dependence on the absolute value of the velocity
corrections to the microscopic equations in the pore spacthrough Re and on the other by breaking fore-aft symmetry
and when ReO(1) we expect a nonlinear macroscopic in a finite-Re wake.

equation. A heuristic argument for a quadratic correction to Darcy’'s
At vanishing values of Re, the averaged presgBjeand  law [ f(Re)~Re] at high Re can be obtained by a boundary-
velocity (U) satisfy Darcy’s law layer-like scaling argument, if one assumes that at finite Re
the microscopic flow field in a disordered porous medium
o does not have a preferred spatial direction for its most rapid
Vp=-— EU7 (3 variation. In a random porous medium, one expects the flow

to “wrap around” the grains, in a fully three-dimensional

where the averaging is either spatial, over regions of spac.f@Sh'o.n' T_he most rapid variation in th_e ve_I00|ty yvould occur
containing many grains, or statistical, over an ensemble opa direction locally normal to the grains in a thin boundary

porous media with the same distribution of grains. We havéayer and therefore without a strong bias with respect to the

assumed in writing this formula that the porous medium icaverage flow. This assertion is in distinction to the common

statistically homogeneous and isotropic, so there is preferreaoundary-layer piqtu_r e, say fo_r flow along a flat plpts),
orientation andk does not vary spatially. At finite values of Where there are d's.t'r.]Ct directions f.o.r the average ﬂ.OW and
Re, rotational invariance constrains the more general ave he most rapid var|at[on. Ir_1 the sp|_r|t of the derlyatlpn Of.
aged equation to the form oundary layer equations, if we estimate the derivatives in
Eqg. (1) by a typical magnitude divided by a typical length
M scale of variation, we have
=—— +

VP K U[1+f(Re], (4) Uz p

—~

u u
A? A%

in which thea priori unknown functionf is the focus of

interest. , _ _ whereL, T refer to longitudinal and transverse length scales,
Note that we have not included in E@) a possible con-  oqpactively. If we assume that ~ A and that the pressure
vective der|vat_|ve term (_)f the fornpU-VU_, wh|ch is al- . variations are negligible, thed~ u/pU. Alternatively, if
lowed by rotational invariance and occasionally included ing,o pressure has an inertial scalifg- pU? the same result
porous medium modeling studies. Such a term would NOolows. while if the pressure has a Darcy scalifg
appear in any flow that is one dimensional on average, sinchU/k’ this term would be negligible when the velocity is
then Fhe average velocity cannot vary, but might appear if th?1igh enough to make the boundary layer thin compared to
flow 'i,";‘”owed to vary on some length scéJemuc_h .Iarger k2 the typical radius of the narrowest parts of the flow
thank or the_ grain ;cala. Thg reason fqr om|tt.|ng th‘? paths controlling the permeability. Given this boundary layer
convective derivative is that a simple scaling estimate 'm'scaling, we can determine the overall pressure R@Er0SS

plllgs Itth_at such a tetrr_n \m" be Tair?scoplcéglly neg“g'lblethe porous medium by use of the exact expres§id for
[13]. It is convenient in this context to non |men5|ona|zeenergy dissipation,

Eq. (4) using a velocity scal&,, the length scalé, and a

Darcy pressure scajeU,/k. The dimensionless form of Eq. au;\ 2
(4) plus the convective derivative term then becomes QP=pun dxz (K) ,
1,] j
VP= _U[1+f(Re)]_pU°kU.VU where the integral runs over the pore space. The right-hand
mL side is estimated as the grain surface area times the boundary

layer thicknessA times the square of the largest velocity

and the coefficient of the last term is Re times the smallgradientU/A, giving UP~A(U/A)? or P~U?2.
numberk¥?/L. In fact, for purposes of macroscopic flow, it
is more sensible to work in terms ofraacroscopidReynolds
number R=pUL/u, in which case the coefficient of the
possible convective derivative term ®(k/L?) and quite We wish to compute the flow in a class of model porous
negligible in most circumstances. media, composed of a two-dimensional regular or random

The form of the correctioi(Re) to Darcy’s law has been arrays of fixed square obstacles placed in the interior of a
a matter of controversy, which has clarified considerably rechannel. Examples are shown in Fig. 1, in which the first is
cently. If one assumes, following Mei and Auria{], that strictly periodic, while the others have obstacles centered at
for finite but small Reynolds number there is a regular perfandom positions with successively decreasing size, so as to
turbation expansion in powers of velocity and the small pa-generate a sequence of increasing porosities. The properties
rametere= kY7L, then rotational invariance essentially dic- of the various cases considered are summarized in Table I.
tates a cubic correctioiiThe original derivation assumed an Figures for all cases and further details on the numerical
additional relation betweer and Re, but it is straightfor- simulations may be found ifiL7]. In the figures, the upper
ward to show that the result holds more generfllg]. Al- and lower horizontal lines represent the confining walls of
ternatively, arguments based on fore-aft symmdffyl0] the channel and the open regions to either side represent
yield the same resujt.In fact, the quadratic Forchheimer empty sections of straight channel in which a Poiseuille ve-
equation circumvents this difficulty on the one hand by alocity profile may be assumed. The obstacles are idealiza-

Ill. SIMULATION METHOD
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TABLE |. Geometric parameters and computational results for
various geometries. Systems 1 and 2 are quasiper{@is dis-

oooooooo played in Fig. 1a)] and the others are randof8, 6, and 8 are
noooooon shown in Figs. tb), 1(c), and 1d), respectively. The length scale
goboaaobog for the “grain size” a and the permeabilitk is the width of the
OoOooOooOoooOonono channel, while the conductivity is normalized to the pure-fluid
OO0OOoOooo value. Numbers in square brackets denote multiplicative powers of
Oooooooono 10.
SN [ A I O System 1) a k o B C
@ 1 0.762 0.0625 1.7%4] 0.566 0.170 0.063
22 0.716 0.0666 2.0p4] 0.522 0.0327 0.0206
a O oad 00 3b 0.842 0.0625 3.494] 0.677 0.101 0.0481
oag O a ooo 4 0.884 0.05 5.514] 0.781 0.090 0.0377
Ooa4d O 5 0.901 0.0469 6.424] 0.804 0.0871 0.0349
O U Od - O U 6° 0.922 0.0416 7.964] 0.842 0.0824 0.0328
o g U gd 7 0956 00312 1.63] 0.908 0.0742 0.0241
O gobg0 g 0980 00208 1.623] 0958 00619 0.0241
oo 405 O 9 0.993 0.0125 2.453] 0.984 0.0505 0.018
ooo o d
) connected pore space. The two- and three-dimensional ex-
periments cited above at various Reynolds numbers do not
o oo show a difference in qualitative behavior, and likewise all of
oo g B@o the theoretical arguments mentioned do not have any dimen-
og g BEO sional sensitivity. Only if the connectivity of the pore space
o o O were an issue, as would occur in immiscible displacement or
i i o . . o . : .
m] mi o in the percolation limit for the single-fluid flows studied
Do PoogPo here, is dimension likely to matter. Second, we have square
oo o "o grains oriented with sides exactly parallel to the average
O u]

flow. However, the precise shape is unlikely to be qualita-
tively significant because there will always be a viscous skin
(c) region surrounding any solid body, which effectively rounds
the cornergsee below for a quantitative discussi@and the

flow around the most upstream grains will have the effect of

S, randomizing the direction of the streamlines incident on
S those downstream. Furthermore, one can think of the squares
LI e as including the sharp corners sometimes found on grains in

o o o geological systems and absent when the grains are com-
e . Tt monly modeled as circles or spheres. Finally, one might ob-

=, " ject that our systems are rather small, containing only 40—60

L grains, and all have relatively high porosity. We certainly

“ o o o o expect that the numerical value of coefficients such as the

permeability to differ from those in more compact systems,
@ but this is not the focus of this work. We are concerned with
FIG. 1. Examples of the porous media geometries studied nuJEhe general form of the flow equation gnd itis .reasona.ble to
merically in this work. expect thz_it the essence of_the system is one with a r_apld local
variation in the flow field imposed by an irregular internal
tions of the solid grains found in laboratory and field systemsbounding surface. In fact, flow in rough pipes exhibits an
and the overall configuration models a “core” of porous analogous transition from linear to quadratic dfag|.
material placed in a jacketing container. The numerical method used is a spectral finite element
These geometries have been chosen for computationatethod, encoded in the commercial software package
convenience and are evidently highly idealized models ofNEkTON [18]. The flow domain is divided into trapezoidal
realistic naturally occurring porous media, but we believeelements and the flow fields are expanded into polynomials
that the differences are not relevant to our conclusions. Firshf a specified order within each element. As an example of
we are working with systems in two dimensions rather tharthe element decomposition, the model porous medium
three or, alternatively, flow at right angles to the axes of arshown in Fig. 1d) is decomposed in Fig. 2. The calculations
array of cylinders of a square cross section. While manyare carried out, typically with fifth-order polynomials to
physical phenomena exhibit a distinction between two andtart, and then refined to order 7 or 9 as a test of the accuracy
three dimensions, there is no reason to expect a problem faf the computation. The resulting variation in the pressure
the laminar flow of a single viscous liquid in a well- difference is less than 1%, over the full range of Reynolds
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I T i 1.01 P23
( 1.009
, 1.008
. 1.007
= 1. 006
' 1.005
FIG. 2. Computational mesh corresponding to Figl))1 1.004
numbers studied. Alternately, the calculation could be re- 1003
fined by subdividing the elements into smaller ones, but the 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
memory requirements made this option impractical. »
The idea of the calculation is to specify the average ve- (a) Re
locity U through the Poiseuille profile at the sample ends,
u(y)=6Uy(w—y)/w?, wherew is the channel width, and
compute the net pressure drop from end to end using 1.025
NEKTON. To focus on the porous media part, we subtract off
the (Poiseuillg pressure drops in the empty regions between 1.02 >
the ends and the grain-filled region, 7
m("‘n
) 1.015
APpy=(P1—=P3) —12uU(X;—x;—Lpw)/w*,  (5)
whereP, , are the upstream and downstream pressures mea- 1.0
sured at the pointg; , andLpy is the length of the central
porous segment. We then fit the resulting porous medium 0.2 0.3 0.4 0.5 0.6 0.7
pressure drop to an appropriate polynomialin )
5 (b) Re
APpy wm  Bp Cp
—-VP= =—U+—U?+ —US3, (6) FIG. 4. Quadratic variation of with Re in the transitional
Loy k KL/2 . . .
regime, corresponding to Fig. 3.
1.14 where the coefficient8 and C are dimensionless. We have
1.12F - anticipated that the pressure gradient will involve at most
cubic terms and the notation is similar to that of Beavers and
L1 Sparrow[3], whose experimental geometry resembles ours.
1.08} It is convenient to recast the latter equation into fully dimen-
3 - sionless form, using the Reynolds number given in &3,
1.06}F by defining a dimensionless pressure gradient normalized to
1.04 Darcy flow,
1.02} L k AP
N = 5. =1+BRetCRé. )
0 1 2 3 1 pE -

(a) Re Aside from global fits using Eq(7), we will also consider
piecewise fits to the transitional cubic and high-Re quadratic
regions and it is convenient to have the special cases

1.6 .
1.5 F,=1+BRe, (8a)
1.4} F;=1+CRé. (8b)
3 .
1.3 e ] For each geometry, we first solve the Stokes equations to
1.2F LT ] find the permeability, defined operationally by dropping the
. nonlinear terms in Eq6), and then the ful(steady, incom-
1.1y R pressiblg Navier-Stokes equations to study nonlinear effects.
1__”_,/" The boundary conditions on the calculations are a no-slip
0 2 4 6 8 velocity on edges of each grain and on the sides of the chan-
(b) Re nel and a Poiseuille velocity profile at the left and right

boundaries. Although the systems studied are not fully rota-
tionally invariant, we have made an effort to choose geom-
etries having at least a discrete 90° rotational invariance. In

FIG. 3. Variation of the normalized pressure dewith Re, for
(a) system 2 shown in Fig.(&) and(b) system 9 shown in Fig.(d).
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e &
1.009 e 1.12
1.008 1.1
1.007 1 o8
= 1.006 CAN

1.06
1.005
1.004 1.04
1.003 / 1.02

0.35 0.4 0.45 0.5 0.55 0.6 0.65 1 1.5 2 2.5 3 3.5 4
(a) Re (@) Re
1.025 1.6 /
1.02 1.5
1.4
U-tN
1015
1.3
1.01 1.2
1.1
0.4 0.5 0.6 0.7 0.8 (b) 2 3 4 5 6 7 8
(b) Re Re
FIG. 5. Combined linear plus quadratic fit to a larger transition FIG. 6. Variation ofF with Re for Re>1, as in Fig. 3.

region, as in Fig. 3. o o ) ) o ]
In addition to these finite-Re considerations, it is of inter-

est to consider the variation of conductivity and permeability
with porosity in the porous media studied here. For conduc-
tivity, we imagine that fluid in the pore space has an electri-
cal conductivityo, impose voltages 1 and 0 on the left and
IV. NUMERICAL RESULTS right edges of the sample, respectively, and compute the net

We have calculated the pressure drop as a function geurrent flowl. The voltage drop in the pure—fluid' regions is
Reynolds number for the systems listed in Table | and illus-Subtracted analogously to the pressure subtraction in%g.
trated in part in Fig. 1. All regular geometries and all randomand the relative conductivity of the porous medium is defined

geometries have essentially the same behavior, respective§>

fact, we find that when the grain-filled region is rotated by
90°, the change in permeability is less than 3%.

so it suffices to discuss one example of each in detail. The

L ; ) . . 1 l/w
variation of the dimensionless pressure drop with Re is g=— ——. (9
shown in Figs. 8&) and 3b) for one typical periodic case 0o AV/Lpy

and one typical random case, corresponding to systems
[Fig. 1(@)] and 8[Fig. 1(d)] in Table I. As stated above, the
numerical results are Darcy flow at small R®nstant-), a

&or the calculation, we uS€EKTON to solve the mathemati-
cally isomorphic heat flow problemThe variation ofg with

cubic transitionalquadraticF) regime at Re0.2-1, and a 0
guadratic behavioflinear F) at higher Re. To verify these 4
statements in more detail, we first focus on the transitional /
regime in Figs. 4), 4(b), indicating how a linear depen- -0.1

dence ofF; vs Ré fits the data reasonably well. Of course,

allowing for a more complicated behavior with an additional 2 _, ,
parameter provides an improved fit and we see in Fi¢g®. 5 =

and 3b), that both better agreement and an extended range /
of Re values are provided by retaining linear and quadratic  -0-3

terms inF. The corresponding coefficients are recorded in /

Table I. The values oB are qualitatively consistent with the _0.4l

experiments of Beavers and Sparrow on flow past arrays of -0.15 -0.1 -0.05 0
circular cylinders, who found a value 0.074 for the corre- In(1-c)

sponding parameter. At Re€l, as indicated in Figs.(6) and
6(b) however, the simulation results do not show any qua- FIG. 7. Variation of effective conductivity with solid fraction
dratic behavior at all. (c=1— ¢) for the random systems 3-9.
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-6.5 *
. 3.
4 -7 =
5 . B
-7.5 .
2.
-8l.
-0.175 -0.125 -0.075 -0.025
ln(l-c) ln(c)
FIG. 8. Variation of normalized permeabilityK(= kiw?) with FIG. 9. Normalized drag vs solid fraction for the random sys-
solid fraction for the random systems 3-9. tems 3-9. The points are the numerical data, the dashed curve is

) ) ) ) ) Eq. (10) using the actual grain cross sectional area and solid frac-
porosity (equivalently, one minus the solid concentratin  tion and the solid line is Eq10) with an”effective’ grain area 1.5
is shown in a log-log plot in Fig. 7. The fit ig~¢?, a times larger.
dependence often found in porous medi§ although vari-

ous values of the exponent are common. Similarly, the variag 715 |n this case, the resulting draglasger than the os-

tion of permeability (normalized to the channel-width tensiple upper bound derived from E@0) and circumscrib-
squaregl with porosity is shown in Fig. 8, but this does not jhq circles. The qualitative reason is that for a given set of
appear to follow a power law. Although for some porousgpstacles, random systems are less permeable than regular
media and in some theoretical models there are interrelateghes. The permeability is controlled by the narrowest span-
power-laws forg andK, such a relation is not always ob- ping set of flow paths, and a random array will have some
served in the laboratory. For e_xample, the “sh_rlnklng tube” narrower gapd22]. Alternatively (in a manner similar to
model of Wonget al. [19], motivated by experiments on a [7]) we can adjust the value of grain cross sectional area by
compact porous medium of well-fused glass beads, predicts g muyltiplicative factor 1.5 to obtain the solid curve in the
permeability exponent twice the conductivity exponent, butﬁgure, arguing that a random array of square grains should

in the geometry considered here the porosity variation woulghe equivalent to a regular array of circular grains at a suit-
not be accurately described in these terms. ably higher concentration.

Alternatively we can compare the permeability variation
with porosity to calculations of the drag on an array of cir-

cular cylinders by Sangani and Acrivg20]. These authors V. CONCLUSIONS
find that a normalized drag per unit length of cylindet We have discussed several aspects of finite Reynolds
=Alck (Ais the cross sectional area and the solid frac-  nymper flow in a model porous medium. The overall result is
tion) can be expressed as that the pressure drop in a flow that is on average unidirec-
tional is linear as Re>0, quadratic at finite Re, and has a
Fr= 4m . (10 cubic dependence in the transitional region. These conclu-

sions are in agreement with md&iut not al) previous the-
oretical, computational, and experimental studies, but we
have examined a somewhat different geometry and thereby
Now for the regular square array in Fig. (&), the simula- helped establish their robustness. In addition, we have pro-
tional result forF’ is 4.36, while Eq.(10) gives 4.43. The vided heuristic arguments for the behavi@) for general
discrepancy may be rationalized based on the familiaflows, as well as some justification for quadratic drag. A
Stokes’s flow theorem that the drag on a solid particle ismumber of open questions remain, most notably to obtain
greater than the drag on any smaller particle that is geometrsome insight into the numerical value of the coefficiént
cally contained within it[21,1€. Here our square grains and perhaps to relate it to other porous media transport co-
would contain the inscribed circular grains of radal2 and  efficients. A first-principles derivation of the quadratic drag
are themselves contained within circumscribing circles of ralaw for random systems might help address this question and
dius a/\2. Formula(10) gives lower and upper bounds for would certainly be of conceptual interest in general.
F’ of 4.08 and 4.72, respectively, which indeed bracket the
numerical value.

In the random case, we pl&t' using our results fok vs
c, using the actual cross sectional area of the grains, as the We thank A. Acrivos and R. Mauri for helpful discus-
points in Fig. 9. The dashed curve is E40), which has a sions. This research was supported by Intevep, SA, and the
similar shape but differs by a multiplicative factor of about U.S. Department of Energy.
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